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Evolution Strategies

Evolution Strategies

Developed: Germany in the 1960s by Rechenberg and Schwefel

Typically applied to numerical optimisation

Attributed features:

Fast
good optimizer for real-valued optimization
Referred as real valued GA
relatively much theory

Special:

self-adaptation of (mutation) parameters standard
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Evolution Strategies

Example

A good example is the satellite dish holder boom.

The design is encoded as a series of angles and spar lengths.

All alleles are real values

The resulting structure by GA is 20,000% (!) better than traditional
shapes, but for humans it looks very strange: it exhibits no symmetry,
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Evolution Strategies

Real Valued Chromosome

How Chromosome j in the population look?

x t(j) = ⟨x t1, . . . , x
t
n⟩

where x ti is gene i value at the tth generetion

1 How each allele can mutate?

Uniform Mutation: the mutated values are drawn uniformly randomly
from [Li ,Ui ] naive
Nonuniform Mutation: This is achieved by adding to the current gene
value an amount drawn randomly from a Gaussian distribution N (0, σ)
How to select σ? called mutation step size

2 How crossover can be done?

Can we do simple split crossover?

No
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Evolution Strategies

(µ + λ) Evolution Strategy

1 Define µ: # parents, λ: # offspring

2 Choose initial population P = {x(1), . . . , x(µ)} and mutability σ > 0

3 For every generation k = 0,1, . . .

Generate λ offsprings using mutation/recombination as follows:

Choose two parent randomly i.e., choose j ∈ {1, . . . , µ}

Mutate each parent x(j)′ = x(j) + σz where z ∈ N (0,1)n

Recombine the mutated parents to generate a child

Selection: Choose P ⊂ P̂ ∶= {x(1), . . . , x(µ), x ′(1), . . . , x ′(λ)}, ∣P ∣ = µ
such that

min{f (x) ∶ x ∈ P} >= max{f (x) ∶ x ∈ P̂/P}

Stop if criteria is met

How to determine the step size? The highlighted step will be modified!
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Evolution Strategies

Notes

In ES, operators are done in the reverse order.

Mutation is essential.

Very difficult to determine the mutation step size σ manually.

In literature, this problem is called mutation strategy parameter
control or self-adaption

In addition, all alleles are assumed to have the same step size.
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Evolution Strategies

Variant (µ,λ) ES

Changes in red

1 Define µ: # parents, λ: # offspring

2 µ < λ

3 For every generation k = 0,1, . . .

Generate λ offsprings using mutation/recombination as follows:

...

Selection: Choose P ⊂ P̂ ∶= {x ′(1), . . . , x ′(λ)}, ∣P ∣ = µ such that

min{f (x) ∶ x ∈ P} >= max{f (x) ∶ x ∈ P̂/P}

Stop if criteria is met
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Evolution Strategies

Self-adaptive Mutation: Step Size variation in the litreature

Self-adaptation intend to adapt the step-size automatically without
users’ intervention.

Self-adaptation has been successfully demonstrated in many
domains.

The key concept is that the mutation step size are not set by the user
rather the σ coevolves with the Chromosomes.

Three settings are considered

x t = ⟨x t1, . . . , x
t
n, σ⟩

Uncorrelated mutations,
one step size

x t = ⟨x t1, . . . , x
t
n, σ

t
1, . . . , σ

t
n⟩

Uncorrelated mutations,
multiple step size

x t = ⟨x t1, . . . , x
t
n, σ

t
1, . . . , σ

t
n, α

t
1, . . . , α

t
n(n−1)

2

⟩

Correlated mutations,
multiple step size
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Mutation in Evolution Strategies

Mutate σ first

Net mutation effect: x = ⟨x1, . . . , xn, σ⟩→ x ′ = ⟨x ′1, . . . , x
′
n, σ

′⟩
Order is important

first σ → σ′

then x → x ′ = x + σ′.N (0,1)

Rational is: two factors affect ⟨x ′, σ′⟩
x ′ is good if fitness f (x ′)
σ′ is good if the created x ′ is good

reversing mutation order this would not work

March 24, 2021 13 / 30



Mutation in Evolution Strategies

Mutation case 1: Uncorrelated mutation with one σ

Chromosomes x = ⟨x1, . . . , xn, σ⟩

σ′ = σ.eτ.N (0,1)

x ′ = x + σ′.N (0,1)n

Typically the ”learning rate” τ ∝ 1
n0.5

And we have a boundary rule : if σ′ < ε then σ′ = ε
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March 24, 2021 15 / 30



Mutation in Evolution Strategies

Mutation case 2: Uncorrelated mutation with n σ’s

Chromosomes x t = ⟨x t1, . . . , x
t
n, σ

t
1, . . . , σ

t
n⟩

σ′i = σi .e
τ ′.N (0,1)+τ.N (0,1)

x ′i = xi + σ
′
i .N (0,1)

Two learning rate parameters

τ ′ overall learning rate
τ coordinate wise learning rate

Typically τ ′ ∝ 1
(2n)0.5 and τ ∝ 1

(2n0.5)0.5

And we have a boundary rule : if σ′i < ε then σ′i = ε
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Mutation in Evolution Strategies

Mutation case 3: Correlated mutations

Chromosomes: x t = ⟨x t1, . . . , x
t
n, σ

t
1, . . . , σ

t
n, α

t
1, . . . , α

t
k⟩

Where k = n(n−1)
2

We define covariance matrix C as:

cii = σ
2
i

cij = 0 if i and j are not correlated.
cii = 0.5(σ2

i − σ
2
j ).tan(2.αij) if i and j are correlated.

σ′i = σi .e
τ ′.N (0,1)+τ.N (0,1)

α′j = αj + β.N (0,1)

x ′ = x +N (0,C ′)

C ′ is the covariance matrix C after mutation.

Typically τ ′ ∝ 1
(2n)0.5 , τ ∝ 1

(2n0.5)0.5 , and β = 5○.

And we have a boundary rule : if σ′i < ε then σ′i = ε
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Mutation case 3: Correlated mutations
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Recombination in Evolution Strategies

Recombination

Creates one child z = ⟨z1, . . . , zn⟩

Two parents can be selected randomly then recombine to generate a
child

OR, two parents can be selected randomly then recombine to
generate a single gene value.

Two fixed parents
Two parents selected

for each gene
zi = (xi + yi)/2 Local average Global average

zi = (αxi + (1 − α)yi)/2 Local arithmetic Global arithmetic

zi = choose xi or yi randomly Local discrete Global discrete
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Recombination in Evolution Strategies

Types of arithmetic recombination

Single Arithmetic Recombination Pick a random gene k. At that
position, take the arithmetic average of the two parents.
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Recombination in Evolution Strategies

Types of arithmetic recombination

Whole Arithmetic Recombination Take the weighted sum of the
two parental values for each gene
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Recombination in Evolution Strategies

Types of arithmetic recombination

Simple Arithmetic Recombination First pick a recombination point
k. Take the weighted sum of the two parental values for each gene
starting from k.
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Illustration Example

Self-adaptation illustrated

Given a dynamically changing fitness landscape (optimum location
shifted every 200 generations)

Self-adaptive ES is able to

follow the optimum and
adjust the mutation step size after every shift !
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Illustration Example

Self-adaptation illustrated cont.

Changes in the average best objective function values (left) and the
mutation step sizes (right). The x-axis is the number of generations.

March 24, 2021 28 / 30



Illustration Example
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Questions
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