Genetic Algorithms

Dr. Mahmoud Nabil Mahmoud mnmahmoud@ncat.edu

North Carolina A & T State University

March 24, 2021

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

- 2 Evolution Strategies
- 3 Mutation in Evolution Strategies
- 4 Recombination in Evolution Strategies
- 5 Illustration Example

< □ > < 同 > < 回 > < 回 > < 回 >

Variants of Genetic Algorithms

- Genetic Algorithms
- Evolution Strategies
- Evolutionary Programming
- Genetic Programming

Algorithm	Chromosome Representation		Mutation
Genetic Algorithm (GA)	Array	Х	Х
Genetic Programming (GP)	Tree	Х	Х
Evolution Strategies (ES)	Array	(X)	Х
Evolutionary Programming (EP)	No constraints	-	Х

э

A 回 > < 三 >

Outline

2 Evolution Strategies

- 3) Mutation in Evolution Strategies
- 4 Recombination in Evolution Strategies

5 Illustration Example

э

< □ > < 同 > < 回 > < 回 > < 回 >

Evolution Strategies

- Developed: Germany in the 1960s by Rechenberg and Schwefel
- Typically applied to numerical optimisation
- Attributed features:
 - Fast
 - good optimizer for real-valued optimization
 - Referred as real valued GA
 - relatively much theory
- Special:
 - self-adaptation of (mutation) parameters standard

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example

A good example is the satellite dish holder boom.

- The design is encoded as a series of angles and spar lengths.
- All alleles are real values
- The resulting structure by GA is 20,000% (!) better than traditional shapes, but for humans it looks very strange: it exhibits no symmetry,

Fig. 2.4. The initial, regular design of the 3D boom (left) and the final design found by a genetic algorithm (right)

< □ > < □ > < □ > < □ > < □ > < □ >

March 24, 2021

6/30

How Chromosome j in the population look?

$$x^{t}(j) = \langle x_{1}^{t}, \dots, x_{n}^{t} \rangle$$

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

where x_i^t is gene *i* value at the t^{th} generation

I How each allele can mutate?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How Chromosome j in the population look?

$$x^{t}(j) = \langle x_{1}^{t}, \dots, x_{n}^{t} \rangle$$

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

where x_i^t is gene *i* value at the t^{th} generation

- I How each allele can mutate?
 - **Uniform Mutation:** the mutated values are drawn uniformly randomly from [*L_i*, *U_i*] naive

イロト 不得 トイヨト イヨト 二日

How Chromosome j in the population look?

$$x^{t}(j) = \langle x_{1}^{t}, \dots, x_{n}^{t} \rangle$$

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

where x_i^t is gene *i* value at the t^{th} generation

- How each allele can mutate?
 - **Uniform Mutation:** the mutated values are drawn uniformly randomly from [*L_i*, *U_i*] naive
 - Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0,\sigma)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How Chromosome j in the population look?

$$x^{t}(j) = \langle x_{1}^{t}, \dots, x_{n}^{t} \rangle$$

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

where x_i^t is gene *i* value at the t^{th} generation

- How each allele can mutate?
 - **Uniform Mutation:** the mutated values are drawn uniformly randomly from [*L_i*, *U_i*] naive
 - Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0,\sigma)$
 - How to select σ ? called **mutation step size**

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How Chromosome j in the population look?

$$x^{t}(j) = \langle x_{1}^{t}, \dots, x_{n}^{t} \rangle$$

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

where x_i^t is gene *i* value at the t^{th} generation

- How each allele can mutate?
 - **Uniform Mutation:** the mutated values are drawn uniformly randomly from [*L_i*, *U_i*] naive
 - Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0,\sigma)$
 - How to select σ ? called **mutation step size**
- e How crossover can be done?

イロト 不得 トイヨト イヨト 二日

How Chromosome j in the population look?

$$x^{t}(j) = \langle x_{1}^{t}, \dots, x_{n}^{t} \rangle$$

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

where x_i^t is gene *i* value at the t^{th} generation

- How each allele can mutate?
 - **Uniform Mutation:** the mutated values are drawn uniformly randomly from [*L_i*, *U_i*] naive
 - Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0,\sigma)$
 - How to select σ ? called **mutation step size**
- e How crossover can be done?
 - Can we do simple split crossover?

イロト 不得 トイヨト イヨト 二日

How Chromosome j in the population look?

$$x^{t}(j) = \langle x_{1}^{t}, \dots, x_{n}^{t} \rangle$$

0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3

where x_i^t is gene *i* value at the t^{th} generation

- How each allele can mutate?
 - **Uniform Mutation:** the mutated values are drawn uniformly randomly from [*L_i*, *U_i*] naive
 - Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0,\sigma)$
 - How to select σ ? called **mutation step size**
- e How crossover can be done?
 - Can we do simple split crossover?
 - No

イロト 不得 トイラト イラト 一日

1 Define μ : # parents, λ : # offspring

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Define μ : # parents, λ : # offspring
- **2** Choose initial population $P = \{x(1), \ldots, x(\mu)\}$ and mutability $\sigma > 0$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

- Define μ : # parents, λ : # offspring
- **2** Choose initial population $P = \{x(1), \ldots, x(\mu)\}$ and mutability $\sigma > 0$
- For every generation k = 0, 1, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Define μ : # parents, λ : # offspring
- **2** Choose initial population $P = \{x(1), \ldots, x(\mu)\}$ and mutability $\sigma > 0$
- Solution For every generation k = 0, 1, ...
 - Generate λ offsprings using mutation/recombination as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Define μ : # parents, λ : # offspring
- **2** Choose initial population $P = \{x(1), \ldots, x(\mu)\}$ and mutability $\sigma > 0$
- Solution For every generation k = 0, 1, ...
 - Generate λ offsprings using mutation/recombination as follows:
 - Choose two parent randomly i.e., choose $j \in \{1, \dots, \mu\}$

- Define μ : # parents, λ : # offspring
- 2 Choose initial population $P = \{x(1), \dots, x(\mu)\}$ and mutability $\sigma > 0$
- Solution For every generation k = 0, 1, ...
 - Generate λ offsprings using mutation/recombination as follows:
 - Choose two parent randomly i.e., choose $j \in \{1, \dots, \mu\}$
 - Mutate each parent $x(j)' = x(j) + \sigma z$ where $z \in \mathcal{N}(0,1)^n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Define μ : # parents, λ : # offspring
- 2 Choose initial population $P = \{x(1), \dots, x(\mu)\}$ and mutability $\sigma > 0$
- Solution For every generation k = 0, 1, ...
 - Generate λ offsprings using mutation/recombination as follows:
 - Choose two parent randomly i.e., choose $j \in \{1, \dots, \mu\}$
 - Mutate each parent $x(j)' = x(j) + \sigma z$ where $z \in \mathcal{N}(0, 1)^n$
 - Recombine the mutated parents to generate a child

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- **1** Define μ : # parents, λ : # offspring
- 2 Choose initial population $P = \{x(1), \dots, x(\mu)\}$ and mutability $\sigma > 0$
- Solution For every generation k = 0, 1, ...
 - Generate λ offsprings using mutation/recombination as follows:
 - Choose two parent randomly i.e., choose $j \in \{1, \dots, \mu\}$
 - Mutate each parent $x(j)' = x(j) + \sigma z$ where $z \in \mathcal{N}(0, 1)^n$
 - Recombine the mutated parents to generate a child
 Selection: Choose P ⊂ P̂ := {x(1),...,x(μ),x'(1),...,x'(λ)}, |P| = μ such that

$$min\{f(x): x \in P\} \ge max\{f(x): x \in \hat{P} \setminus P\}$$

- **1** Define μ : # parents, λ : # offspring
- 2 Choose initial population $P = \{x(1), \dots, x(\mu)\}$ and mutability $\sigma > 0$
- For every generation k = 0, 1, ...
 - Generate λ offsprings using mutation/recombination as follows:
 - Choose two parent randomly i.e., choose $j \in \{1, \dots, \mu\}$
 - Mutate each parent $x(j)' = x(j) + \sigma z$ where $z \in \mathcal{N}(0,1)^n$
 - Recombine the mutated parents to generate a child
 Selection: Choose P ⊂ P̂ := {x(1),...,x(μ),x'(1),...,x'(λ)}, |P| = μ such that

$$min\{f(x): x \in P\} \ge max\{f(x): x \in \hat{P} \setminus P\}$$

• Stop if criteria is met

- **1** Define μ : # parents, λ : # offspring
- 2 Choose initial population $P = \{x(1), \dots, x(\mu)\}$ and mutability $\sigma > 0$
- For every generation k = 0, 1, ...
 - Generate λ offsprings using mutation/recombination as follows:
 - Choose two parent randomly i.e., choose $j \in \{1, \dots, \mu\}$
 - Mutate each parent $x(j)' = x(j) + \sigma z$ where $z \in \mathcal{N}(0,1)^n$
 - Recombine the mutated parents to generate a child
 Selection: Choose P ⊂ P̂ := {x(1),...,x(μ),x'(1),...,x'(λ)}, |P| = μ such that

$$min\{f(x): x \in P\} \ge max\{f(x): x \in \hat{P} \setminus P\}$$

• Stop if criteria is met

- Define μ : # parents, λ : # offspring
- 2 Choose initial population $P = \{x(1), \dots, x(\mu)\}$ and mutability $\sigma > 0$
- Solution For every generation k = 0, 1, ...
 - Generate λ offsprings using mutation/recombination as follows:
 - Choose two parent randomly i.e., choose $j \in \{1, \dots, \mu\}$

• Mutate each parent $x(j)' = x(j) + \sigma z$ where $z \in \mathcal{N}(0,1)^n$

- Recombine the mutated parents to generate a child
- Selection: Choose $P \subset \hat{P} := \{x(1), \dots, x(\mu), x'(1), \dots, x'(\lambda)\}, |P| = \mu$ such that

$$min\{f(x): x \in P\} \ge max\{f(x): x \in \hat{P} \setminus P\}$$

• Stop if criteria is met

How to determine the step size? The highlighted step will be modified!

Notes

- In ES, operators are done in the reverse order.
- Mutation is essential.
- Very difficult to determine the mutation step size σ manually.
- In literature, this problem is called mutation strategy parameter control or self-adaption
- In addition, all alleles are assumed to have the same step size.

A (10) A (10) A (10)

Variant (μ, λ) ES

Changes in red

1 Define μ : # parents, λ : # offspring

2 $\mu < \lambda$

- **③** For every generation k = 0, 1, ...
 - Generate λ offsprings using mutation/recombination as follows:

• Selection: Choose $P \subset \hat{P} := \{x'(1), \dots, x'(\lambda)\}, |P| = \mu$ such that $min\{f(x): x \in P\} \ge max\{f(x): x \in \hat{P} \setminus P\}$

Stop if criteria is met

o ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• **Self-adaptation** intend to adapt the step-size automatically without users' intervention.

▲ □ ▶ ▲ 三 ▶ ▲ 三

• **Self-adaptation** intend to adapt the step-size automatically without users' intervention.

▲ □ ▶ ▲ 三 ▶ ▲ 三

March 24, 2021

11/30

• **Self-adaptation** has been successfully demonstrated in many domains.

- **Self-adaptation** intend to adapt the step-size automatically without users' intervention.
- **Self-adaptation** has been successfully demonstrated in many domains.
- The key concept is that the mutation step size are not set by the user rather the σ coevolves with the Chromosomes.

- **Self-adaptation** intend to adapt the step-size automatically without users' intervention.
- **Self-adaptation** has been successfully demonstrated in many domains.
- The key concept is that the mutation step size are not set by the user rather the σ coevolves with the Chromosomes.

March 24, 2021

11/30

• Three settings are considered

- **Self-adaptation** intend to adapt the step-size automatically without users' intervention.
- **Self-adaptation** has been successfully demonstrated in many domains.
- The key concept is that the mutation step size are not set by the user rather the σ coevolves with the Chromosomes.

March 24, 2021

11/30

• Three settings are considered

- **Self-adaptation** intend to adapt the step-size automatically without users' intervention.
- **Self-adaptation** has been successfully demonstrated in many domains.
- The key concept is that the mutation step size are not set by the user rather the σ coevolves with the Chromosomes.
- Three settings are considered

 $x^t = \langle x_1^t, \dots, x_n^t, \sigma \rangle$ Uncorrelated mutations, one step size

 $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t \rangle$ Uncorrelated mutations, multiple step size $\begin{aligned} x^{t} &= \langle x_{1}^{t}, \dots, x_{n}^{t}, \sigma_{1}^{t}, \dots, \sigma_{n}^{t}, \alpha_{1}^{t}, \dots, \alpha_{\frac{t}{n}(n-1)}^{t} \rangle \\ \text{Correlated mutations,} \\ & \square, \quad \text{multiple step size} \\ & \square \\ & \square \\ \end{aligned}$

March 24, 2021

11/30

Outline

- 2 Evolution Strategies
- 3 Mutation in Evolution Strategies
 - 4 Recombination in Evolution Strategies

イロト イヨト イヨト イヨト

э

12/30

March 24, 2021

5 Illustration Example

Mutate σ first

• Net mutation effect: $x = \langle x_1, \dots, x_n, \sigma \rangle \rightarrow x' = \langle x'_1, \dots, x'_n, \sigma' \rangle$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

March 24, 2021

13 / 30

- Order is important
 - first $\sigma \to \sigma'$
 - then $x \to x' = x + \sigma' . \mathcal{N}(0, 1)$
- Rational is: two factors affect $\langle x', \sigma' \rangle$
 - x' is good if fitness f(x')
 - σ' is good if the created x' is good
- reversing mutation order this would not work

Mutation case 1: Uncorrelated mutation with one σ

• Chromosomes
$$x = \langle x_1, \ldots, x_n, \sigma \rangle$$

æ

イロト イポト イヨト イヨト

Mutation case 1: Uncorrelated mutation with one σ

イロト イポト イヨト イヨト

æ

14 / 30

March 24, 2021

• Chromosomes
$$x = \langle x_1, \dots, x_n, \sigma \rangle$$

• $\sigma' = \sigma. e^{\tau.\mathcal{N}(0,1)}$

March 24, 2021 14 / 30

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

イロト イポト イヨト イヨト 二日

March 24, 2021

- Chromosomes $x = \langle x_1, \dots, x_n, \sigma \rangle$ • $\sigma' = \sigma. e^{\tau. \mathcal{N}(0, 1)}$
- $x' = x + \sigma' . \mathcal{N}(0, 1)^n$
- Typically the "learning rate" $\tau \propto \frac{1}{n^{0.5}}$

- Chromosomes $x = \langle x_1, \dots, x_n, \sigma \rangle$ • $\sigma' = \sigma. e^{\tau. \mathcal{N}(0, 1)}$
- $x' = x + \sigma' \mathcal{N}(0, 1)^n$
- Typically the "learning rate" $\tau \propto \frac{1}{p^{0.5}}$
- And we have a boundary rule : if $\sigma' < \epsilon$ then $\sigma' = \epsilon$

<日→<三→<三→ March 24, 2021

3

(日) (四) (日) (日) (日)

• Chromosomes $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t \rangle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Chromosomes $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t \rangle$ • $\sigma'_i = \sigma_i . e^{\tau' . \mathcal{N}(0,1) + \tau . \mathcal{N}(0,1)}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3

16 / 30

March 24, 2021

• Chromosomes
$$x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t \rangle$$

• $\sigma'_i = \sigma_i . e^{\tau' . \mathcal{N}(0,1) + \tau . \mathcal{N}(0,1)}$
• $x'_i = x_i + \sigma'_i . \mathcal{N}(0,1)$

イロト イポト イヨト イヨト 二日

March 24, 2021

- Chromosomes $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t \rangle$ • $\sigma'_i = \sigma_i . e^{\tau' . \mathcal{N}(0, 1) + \tau . \mathcal{N}(0, 1)}$
- $x'_i = x_i + \sigma'_i \mathcal{N}(0, 1)$
- Two learning rate parameters

- Chromosomes $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t \rangle$ • $\sigma'_i = \sigma_i . e^{\tau' . \mathcal{N}(0, 1) + \tau . \mathcal{N}(0, 1)}$
- $x'_i = x_i + \sigma'_i \mathcal{N}(0,1)$
- Two learning rate parameters
 - τ' overall learning rate

◆ □ → < 三 → < 三 → March 24, 2021

- Chromosomes $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t \rangle$
- $\sigma'_i = \sigma_i \cdot e^{\tau' \cdot \mathcal{N}(0,1) + \tau \cdot \mathcal{N}(0,1)}$
- $x'_i = x_i + \sigma'_i . \mathcal{N}(0, 1)$
- Two learning rate parameters
 - τ' overall learning rate
 - τ coordinate wise learning rate

(1) マン・ション (1) マン・ March 24, 2021

- Chromosomes $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t \rangle$ • $\sigma'_i = \sigma_i \cdot e^{\tau' \cdot \mathcal{N}(0,1) + \tau \cdot \mathcal{N}(0,1)}$
- $x'_{i} = x_{i} + \sigma'_{i} . \mathcal{N}(0, 1)$
- Two learning rate parameters
 - τ' overall learning rate
 - τ coordinate wise learning rate

• Typically
$$au' \propto rac{1}{(2n)^{0.5}}$$
 and $au \propto rac{1}{(2n^{0.5})^{0.5}}$

- Chromosomes $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t \rangle$
- $\sigma'_i = \sigma_i \cdot e^{\tau' \cdot \mathcal{N}(0,1) + \tau \cdot \mathcal{N}(0,1)}$
- $x'_i = x_i + \sigma'_i . \mathcal{N}(0, 1)$
- Two learning rate parameters
 - τ' overall learning rate
 - τ coordinate wise learning rate
- Typically $\tau' \propto \frac{1}{(2n)^{0.5}}$ and $\tau \propto \frac{1}{(2n^{0.5})^{0.5}}$
- And we have a boundary rule : if $\sigma'_i < \epsilon$ then $\sigma'_i = \epsilon$

くぼう くほう くほう しゅ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

• Chromosomes: $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t, \alpha_1^t, \dots, \alpha_k^t \rangle$

• Chromosomes: $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t, \alpha_1^t, \dots, \alpha_k^t \rangle$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの March 24, 2021

18 / 30

• Where $k = \frac{n(n-1)}{2}$

- Chromosomes: $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t, \alpha_1^t, \dots, \alpha_k^t \rangle$
- Where $k = \frac{n(n-1)}{2}$
- We define covariance matrix C as:

• Chromosomes: $x^t = \langle x_1^t, \ldots, x_n^t, \sigma_1^t, \ldots, \sigma_n^t, \alpha_1^t, \ldots, \alpha_k^t \rangle$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの March 24, 2021

- Where $k = \frac{n(n-1)}{2}$
- We define covariance matrix C as:

•
$$c_{ii} = \sigma_i^2$$

• Chromosomes: $x^t = \langle x_1^t, \ldots, x_n^t, \sigma_1^t, \ldots, \sigma_n^t, \alpha_1^t, \ldots, \alpha_k^t \rangle$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの March 24, 2021

18/30

- Where $k = \frac{n(n-1)}{2}$
- We define covariance matrix C as:

•
$$c_{ii} = \sigma_i^2$$

• $c_{ii} = 0$ if *i* and *j* are not correlated.

- Chromosomes: $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t, \alpha_1^t, \dots, \alpha_k^t \rangle$
- Where $k = \frac{n(n-1)}{2}$

• We define covariance matrix C as:

•
$$c_{ii} = \sigma_i^2$$

- $c_{ij} = 0$ if *i* and *j* are not correlated.
- $c_{ii} = 0.5(\sigma_i^2 \sigma_j^2).\tan(2.\alpha_{ij})$ if *i* and *j* are correlated.

▲ □→ ▲ 三→ ▲ 三→ 三 March 24, 2021

- Chromosomes: $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t, \alpha_1^t, \dots, \alpha_k^t \rangle$
- Where $k = \frac{n(n-1)}{2}$

• We define covariance matrix C as:

•
$$c_{ii} = \sigma_i^2$$

• $c_{ij} = 0$ if i and j are not correlated.
• $c_{ii} = 0.5(\sigma_i^2 - \sigma_j^2).\tan(2.\alpha_{ij})$ if i and j are correlated
 $\sigma'_i = \sigma_i \cdot e^{\tau' \cdot \mathcal{N}(0,1) + \tau \cdot \mathcal{N}(0,1)}$

- Chromosomes: $x^t = \langle x_1^t, \ldots, x_n^t, \sigma_1^t, \ldots, \sigma_n^t, \alpha_1^t, \ldots, \alpha_k^t \rangle$
- Where $k = \frac{n(n-1)}{2}$

• We define covariance matrix C as:

•
$$c_{ii} = \sigma_i^2$$

• $c_{ij} = 0$ if i and j are not correlated.
• $c_{ii} = 0.5(\sigma_i^2 - \sigma_j^2).\tan(2.\alpha_{ij})$ if i and j are correlated.
• $\sigma'_i = \sigma_i . e^{\tau' . \mathcal{N}(0, 1) + \tau . \mathcal{N}(0, 1)}$
• $\alpha'_j = \alpha_j + \beta . \mathcal{N}(0, 1)$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの March 24, 2021

- Chromosomes: $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t, \alpha_1^t, \dots, \alpha_k^t \rangle$
- Where $k = \frac{n(n-1)}{2}$

• We define covariance matrix C as:

•
$$c_{ii} = \sigma_i^2$$

• $c_{ij} = 0$ if i and j are not correlated.
• $c_{ii} = 0.5(\sigma_i^2 - \sigma_j^2).\tan(2.\alpha_{ij})$ if i and j are correlated.
• $\sigma_i' = \sigma_i . e^{\tau' . \mathcal{N}(0, 1) + \tau . \mathcal{N}(0, 1)}$
• $\alpha_j' = \alpha_j + \beta . \mathcal{N}(0, 1)$
• $x' = x + \mathcal{N}(0, C')$

- Chromosomes: $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t, \alpha_1^t, \dots, \alpha_k^t \rangle$
- Where $k = \frac{n(n-1)}{2}$

• We define covariance matrix C as:

C' is the covariance matrix C after mutation.

- Chromosomes: $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t, \alpha_1^t, \dots, \alpha_k^t \rangle$
- Where $k = \frac{n(n-1)}{2}$

• We define covariance matrix C as:

•
$$c_{ii} = \sigma_i^2$$

• $c_{ij} = 0$ if i and j are not correlated.
• $c_{ii} = 0.5(\sigma_i^2 - \sigma_j^2).\tan(2.\alpha_{ij})$ if i and j are correlated.
• $\sigma_i' = \sigma_i.e^{\tau'.\mathcal{N}(0,1)+\tau.\mathcal{N}(0,1)}$
• $\alpha_j' = \alpha_j + \beta.\mathcal{N}(0,1)$
• $x' = x + \mathcal{N}(0,C')$
• C' is the covariance matrix C after mutation.
• Typically $\tau' \propto \frac{1}{(2n)^{0.5}}$, $\tau \propto \frac{1}{(2n^{0.5})^{0.5}}$, and $\beta = 5^\circ$.

- Chromosomes: $x^t = \langle x_1^t, \dots, x_n^t, \sigma_1^t, \dots, \sigma_n^t, \alpha_1^t, \dots, \alpha_k^t \rangle$
- Where $k = \frac{n(n-1)}{2}$

• We define covariance matrix C as:

•
$$c_{ii} = \sigma_i^2$$

• $c_{ij} = 0$ if i and j are not correlated.
• $c_{ii} = 0.5(\sigma_i^2 - \sigma_j^2).tan(2.\alpha_{ij})$ if i and j are correlated.
• $\sigma_i' = \sigma_i.e^{\tau'.\mathcal{N}(0,1)+\tau.\mathcal{N}(0,1)}$
• $\alpha_j' = \alpha_j + \beta.\mathcal{N}(0,1)$
• $x' = x + \mathcal{N}(0, C')$
• C' is the covariance matrix C after mutation.
• Typically $\tau' \propto \frac{1}{(2n)^{0.5}}$, $\tau \propto \frac{1}{(2n^{0.5})^{0.5}}$, and $\beta = 5^{\circ}$.

• And we have a boundary rule : if $\sigma'_i < \epsilon$ then $\sigma'_i = \epsilon$

March 24, 2021 19 / 30

2

イロト イボト イヨト イヨト

Outline

- 2 Evolution Strategies
- 3 Mutation in Evolution Strategies
- 4 Recombination in Evolution Strategies

Illustration Example

э

Recombination

- Creates one child $z = \langle z_1, \ldots, z_n \rangle$
- Two parents can be selected randomly then recombine to generate a child
- OR, two parents can be selected randomly then recombine to generate a single gene value.

	Two fixed parents	Two parents selected for each gene
$z_i = (x_i + y_i)/2$	Local average	Global average
$z_i = (\alpha x_i + (1 - \alpha)y_i)/2$	Local arithmetic	Global arithmetic
z_i = choose x_i or y_i randomly	Local discrete	Global discrete

イロト 不得下 イヨト イヨト 二日

Types of arithmetic recombination

• **Single Arithmetic Recombination** Pick a random gene k. At that position, take the arithmetic average of the two parents.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Types of arithmetic recombination

• Whole Arithmetic Recombination Take the weighted sum of the two parental values for each gene

- 4 回 ト - 4 三 ト

Types of arithmetic recombination

• Simple Arithmetic Recombination First pick a recombination point k. Take the weighted sum of the two parental values for each gene starting from k.

Outline

- Evolution Strategies
- 3 Mutation in Evolution Strategies
- 4 Recombination in Evolution Strategies

5 Illustration Example

э

イロト イヨト イヨト イヨ

Self-adaptation illustrated

• Given a dynamically changing fitness landscape (optimum location shifted every 200 generations)

▲ □ ▶ ▲ □ ▶ ▲ □

March 24, 2021

- Self-adaptive ES is able to
 - follow the optimum and
 - adjust the mutation step size after every shift !

Self-adaptation illustrated

• Given a dynamically changing fitness landscape (optimum location shifted every 200 generations)

▲ □ ▶ ▲ □ ▶ ▲ □

March 24, 2021

- Self-adaptive ES is able to
 - follow the optimum and
 - adjust the mutation step size after every shift !

Self-adaptation illustrated cont.

Changes in the average best objective function values (left) and the mutation step sizes (right). The x-axis is the number of generations.

References

- Goldenberg, D.E., 1989. Genetic algorithms in search, optimization and machine learning.
- Michalewicz, Z., 2013. Genetic algorithms + data structures= evolution programs. Springer Science & Business Media

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Illustration Example

・ロト ・四ト ・ヨト ・ヨト

2

30 / 30

March 24, 2021

