Genetic Algorithms

Dr. Mahmoud Nabil Mahmoud mnmahmoud@ncat.edu
North Carolina A \& T State University

March 24, 2021

Outline

(1) Introduction

(2) Evolution Strategies
(3) Mutation in Evolution Strategies

4 Recombination in Evolution Strategies
(5) Illustration Example

Variants of Genetic Algorithms

- Genetic Algorithms
- Evolution Strategies
- Evolutionary Programming
- Genetic Programming

Algorithm	Chromosome Representation	Crossover	Mutation
Genetic Algorithm (GA)	Array	X	X
Genetic Programming (GP)	Tree	X	X
Evolution Strategies (ES)	Array	(X)	X
Evolutionary Programming (EP)	No constraints	-	X

Outline

(1) Introduction

(2) Evolution Strategies

(3) Mutation in Evolution Strategies

4 Recombination in Evolution Strategies
(5) Illustration Example

Evolution Strategies

- Developed: Germany in the 1960s by Rechenberg and Schwefel
- Typically applied to numerical optimisation
- Attributed features:
- Fast
- good optimizer for real-valued optimization
- Referred as real valued GA
- relatively much theory
- Special:
- self-adaptation of (mutation) parameters standard

Example

A good example is the satellite dish holder boom.

- The design is encoded as a series of angles and spar lengths.
- All alleles are real values
- The resulting structure by GA is $20,000 \%$ (!) better than traditional shapes, but for humans it looks very strange: it exhibits no symmetry,

Fig. 2.4. The initial, regular design of the 3D boom (left) and the final design found by a genetic algorithm (right)

Real Valued Chromosome

How Chromosome j in the population look?

$$
\left.\right)
$$

where x_{i}^{t} is gene i value at the $t^{t h}$ generetion
(1) How each allele can mutate?

Real Valued Chromosome

How Chromosome j in the population look?

$$
\begin{aligned}
& x^{t}(j)=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}\right\rangle \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0.3 & 0.2 & 0.3 & 0.2 & 0.3 & 0.2 & 0.3 & 0.2 & 0.3 \\
\hline
\end{array}
\end{aligned}
$$

where x_{i}^{t} is gene i value at the $t^{t h}$ generetion
(1) How each allele can mutate?

- Uniform Mutation: the mutated values are drawn uniformly randomly from $\left[L_{i}, U_{i}\right]$ naive

Real Valued Chromosome

How Chromosome j in the population look?

$$
\begin{aligned}
& x^{t}(j)=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}\right\rangle \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0.3 & 0.2 & 0.3 & 0.2 & 0.3 & 0.2 & 0.3 & 0.2 & 0.3 \\
\hline
\end{array}
\end{aligned}
$$

where x_{i}^{t} is gene i value at the $t^{t h}$ generetion
(1) How each allele can mutate?

- Uniform Mutation: the mutated values are drawn uniformly randomly from $\left[L_{i}, U_{i}\right]$ naive
- Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0, \sigma)$

Real Valued Chromosome

How Chromosome j in the population look?

$$
\begin{aligned}
& x^{t}(j)=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}\right\rangle \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0.3 & 0.2 & 0.3 & 0.2 & 0.3 & 0.2 & 0.3 & 0.2 & 0.3 \\
\hline
\end{array}
\end{aligned}
$$

where x_{i}^{t} is gene i value at the $t^{t h}$ generetion
(1) How each allele can mutate?

- Uniform Mutation: the mutated values are drawn uniformly randomly from $\left[L_{i}, U_{i}\right]$ naive
- Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0, \sigma)$
- How to select σ ? called mutation step size

Real Valued Chromosome

How Chromosome j in the population look?

$$
\begin{aligned}
& x^{t}(j)=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}\right\rangle \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0.3 & 0.2 & 0.3 & 0.2 & 0.3 & 0.2 & 0.3 & 0.2 & 0.3 \\
\hline
\end{array}
\end{aligned}
$$

where x_{i}^{t} is gene i value at the $t^{t h}$ generetion
(1) How each allele can mutate?

- Uniform Mutation: the mutated values are drawn uniformly randomly from $\left[L_{i}, U_{i}\right]$ naive
- Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0, \sigma)$
- How to select σ ? called mutation step size
(2) How crossover can be done?

Real Valued Chromosome

How Chromosome j in the population look?

$$
\left.\right)
$$

where x_{i}^{t} is gene i value at the $t^{t h}$ generetion
(1) How each allele can mutate?

- Uniform Mutation: the mutated values are drawn uniformly randomly from $\left[L_{i}, U_{i}\right]$ naive
- Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0, \sigma)$
- How to select σ ? called mutation step size
(2) How crossover can be done?
- Can we do simple split crossover?

Real Valued Chromosome

How Chromosome j in the population look?

$$
\left.\right)
$$

where x_{i}^{t} is gene i value at the $t^{t h}$ generetion
(1) How each allele can mutate?

- Uniform Mutation: the mutated values are drawn uniformly randomly from $\left[L_{i}, U_{i}\right]$ naive
- Nonuniform Mutation: This is achieved by adding to the current gene value an amount drawn randomly from a Gaussian distribution $\mathcal{N}(0, \sigma)$
- How to select σ ? called mutation step size
(2) How crossover can be done?
- Can we do simple split crossover?
- No

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$
(3) For every generation $k=0,1, \ldots$

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$
(3) For every generation $k=0,1, \ldots$

- Generate λ offsprings using mutation/recombination as follows:

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$
(3) For every generation $k=0,1, \ldots$

- Generate λ offsprings using mutation/recombination as follows:
- Choose two parent randomly i.e., choose $j \in\{1, \ldots, \mu\}$

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$
(3) For every generation $k=0,1, \ldots$

- Generate λ offsprings using mutation/recombination as follows:
- Choose two parent randomly i.e., choose $j \in\{1, \ldots, \mu\}$
- Mutate each parent $x(j)^{\prime}=x(j)+\sigma z$ where $z \in \mathcal{N}(0,1)^{n}$

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$
(3) For every generation $k=0,1, \ldots$

- Generate λ offsprings using mutation/recombination as follows:
- Choose two parent randomly i.e., choose $j \in\{1, \ldots, \mu\}$
- Mutate each parent $x(j)^{\prime}=x(j)+\sigma z$ where $z \in \mathcal{N}(0,1)^{n}$
- Recombine the mutated parents to generate a child

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$
(3) For every generation $k=0,1, \ldots$

- Generate λ offsprings using mutation/recombination as follows:
- Choose two parent randomly i.e., choose $j \in\{1, \ldots, \mu\}$
- Mutate each parent $x(j)^{\prime}=x(j)+\sigma z$ where $z \in \mathcal{N}(0,1)^{n}$
- Recombine the mutated parents to generate a child
- Selection: Choose $P \subset \hat{P}:=\left\{x(1), \ldots, x(\mu), x^{\prime}(1), \ldots, x^{\prime}(\lambda)\right\},|P|=\mu$ such that

$$
\min \{f(x): \quad x \in P\}>=\max \{f(x): \quad x \in \hat{P} \backslash P\}
$$

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$
(3) For every generation $k=0,1, \ldots$

- Generate λ offsprings using mutation/recombination as follows:
- Choose two parent randomly i.e., choose $j \in\{1, \ldots, \mu\}$
- Mutate each parent $x(j)^{\prime}=x(j)+\sigma z$ where $z \in \mathcal{N}(0,1)^{n}$
- Recombine the mutated parents to generate a child
- Selection: Choose $P \subset \hat{P}:=\left\{x(1), \ldots, x(\mu), x^{\prime}(1), \ldots, x^{\prime}(\lambda)\right\},|P|=\mu$ such that

$$
\min \{f(x): \quad x \in P\}>=\max \{f(x): \quad x \in \hat{P} \backslash P\}
$$

- Stop if criteria is met

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$
(3) For every generation $k=0,1, \ldots$

- Generate λ offsprings using mutation/recombination as follows:
- Choose two parent randomly i.e., choose $j \in\{1, \ldots, \mu\}$
- Mutate each parent $x(j)^{\prime}=x(j)+\sigma z$ where $z \in \mathcal{N}(0,1)^{n}$
- Recombine the mutated parents to generate a child
- Selection: Choose $P \subset \hat{P}:=\left\{x(1), \ldots, x(\mu), x^{\prime}(1), \ldots, x^{\prime}(\lambda)\right\},|P|=\mu$ such that

$$
\min \{f(x): \quad x \in P\}>=\max \{f(x): \quad x \in \hat{P} \backslash P\}
$$

- Stop if criteria is met

$(\mu+\lambda)$ Evolution Strategy

(1) Define μ : \# parents, λ : \# offspring
(2) Choose initial population $P=\{x(1), \ldots, x(\mu)\}$ and mutability $\sigma>0$
(3) For every generation $k=0,1, \ldots$

- Generate λ offsprings using mutation/recombination as follows:
- Choose two parent randomly i.e., choose $j \in\{1, \ldots, \mu\}$
- Mutate each parent $x(j)^{\prime}=x(j)+\sigma z$ where $z \in \mathcal{N}(0,1)^{n}$
- Recombine the mutated parents to generate a child
- Selection: Choose $P \subset \hat{P}:=\left\{x(1), \ldots, x(\mu), x^{\prime}(1), \ldots, x^{\prime}(\lambda)\right\},|P|=\mu$ such that

$$
\min \{f(x): \quad x \in P\}>=\max \{f(x): \quad x \in \hat{P} \backslash P\}
$$

- Stop if criteria is met

How to determine the step size? The highlighted step will be modified!

Notes

- In ES, operators are done in the reverse order.
- Mutation is essential.
- Very difficult to determine the mutation step size σ manually.
- In literature, this problem is called mutation strategy parameter control or self-adaption
- In addition, all alleles are assumed to have the same step size.

Variant $(\mu, \lambda) \mathrm{ES}$

Changes in red
(1) Define μ : \# parents, λ : \# offspring
(2) $\mu<\lambda$
(3) For every generation $k=0,1, \ldots$

- Generate λ offsprings using mutation/recombination as follows:
- ...
- Selection: Choose $P \subset \hat{P}:=\left\{x^{\prime}(1), \ldots, x^{\prime}(\lambda)\right\},|P|=\mu$ such that $\min \{f(x): \quad x \in P\}>=\max \{f(x): \quad x \in \hat{P} \backslash P\}$
- Stop if criteria is met

Self-adaptive Mutation: Step Size variation in the litreature

- Self-adaptation intend to adapt the step-size automatically without users' intervention.

Self-adaptive Mutation: Step Size variation in the litreature

- Self-adaptation intend to adapt the step-size automatically without users' intervention.
- Self-adaptation has been successfully demonstrated in many domains.

Self-adaptive Mutation: Step Size variation in the litreature

- Self-adaptation intend to adapt the step-size automatically without users' intervention.
- Self-adaptation has been successfully demonstrated in many domains.
- The key concept is that the mutation step size are not set by the user rather the σ coevolves with the Chromosomes.

Self-adaptive Mutation: Step Size variation in the litreature

- Self-adaptation intend to adapt the step-size automatically without users' intervention.
- Self-adaptation has been successfully demonstrated in many domains.
- The key concept is that the mutation step size are not set by the user rather the σ coevolves with the Chromosomes.
- Three settings are considered

Self-adaptive Mutation: Step Size variation in the litreature

- Self-adaptation intend to adapt the step-size automatically without users' intervention.
- Self-adaptation has been successfully demonstrated in many domains.
- The key concept is that the mutation step size are not set by the user rather the σ coevolves with the Chromosomes.
- Three settings are considered

Self-adaptive Mutation: Step Size variation in the litreature

- Self-adaptation intend to adapt the step-size automatically without users' intervention.
- Self-adaptation has been successfully demonstrated in many domains.
- The key concept is that the mutation step size are not set by the user rather the σ coevolves with the Chromosomes.
- Three settings are considered

$$
x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma\right\rangle
$$

Uncorrelated mutations, one step size

$$
x^{t}=\left\langle x_{1}^{t}, \ldots,,_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}\right\rangle
$$

Uncorrelated mutations, multiple step size

$x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{\frac{(n-1)}{2}}^{t}\right)$
Correlated mutations, multiple step size

Outline

(1) Introduction
(2) Evolution Strategies
(3) Mutation in Evolution Strategies

4 Recombination in Evolution Strategies
(5) Illustration Example

Mutate σ first

- Net mutation effect: $x=\left\langle x_{1}, \ldots, x_{n}, \sigma\right\rangle \rightarrow x^{\prime}=\left\langle x_{1}^{\prime}, \ldots, x_{n}^{\prime}, \sigma^{\prime}\right\rangle$
- Order is important
- first $\sigma \rightarrow \sigma^{\prime}$
- then $x \rightarrow x^{\prime}=x+\sigma^{\prime} . \mathcal{N}(0,1)$
- Rational is: two factors affect $\left\langle x^{\prime}, \sigma^{\prime}\right\rangle$
- x^{\prime} is good if fitness $f\left(x^{\prime}\right)$
- σ^{\prime} is good if the created x^{\prime} is good
- reversing mutation order this would not work

Mutation case 1: Uncorrelated mutation with one σ

- Chromosomes $x=\left\langle x_{1}, \ldots, x_{n}, \sigma\right\rangle$

Mutation case 1: Uncorrelated mutation with one σ

- Chromosomes $x=\left\langle x_{1}, \ldots, x_{n}, \sigma\right\rangle$
- $\sigma^{\prime}=\sigma \cdot e^{\tau . \mathcal{N}(0,1)}$

Mutation case 1: Uncorrelated mutation with one σ

- Chromosomes $x=\left\langle x_{1}, \ldots, x_{n}, \sigma\right\rangle$
- $\sigma^{\prime}=\sigma \cdot e^{\tau . \mathcal{N}(0,1)}$
- $x^{\prime}=x+\sigma^{\prime} \cdot \mathcal{N}(0,1)^{n}$

Mutation case 1: Uncorrelated mutation with one σ

- Chromosomes $x=\left\langle x_{1}, \ldots, x_{n}, \sigma\right\rangle$
- $\sigma^{\prime}=\sigma \cdot e^{\tau . N(0,1)}$
- $x^{\prime}=x+\sigma^{\prime} \cdot \mathcal{N}(0,1)^{n}$
- Typically the "learning rate" $\tau \propto \frac{1}{n^{0.5}}$

Mutation case 1: Uncorrelated mutation with one σ

- Chromosomes $x=\left\langle x_{1}, \ldots, x_{n}, \sigma\right\rangle$
- $\sigma^{\prime}=\sigma \cdot e^{\tau . N(0,1)}$
- $x^{\prime}=x+\sigma^{\prime} \cdot \mathcal{N}(0,1)^{n}$
- Typically the "learning rate" $\tau \propto \frac{1}{n^{0.5}}$
- And we have a boundary rule: if $\sigma^{\prime}<\epsilon$ then $\sigma^{\prime}=\epsilon$

Mutation case 1: Uncorrelated mutation with one σ

Mutation case 2: Uncorrelated mutation with $\mathrm{n} \sigma$'s

- Chromosomes $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}\right\rangle$

Mutation case 2: Uncorrelated mutation with $\mathrm{n} \sigma$'s

- Chromosomes $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}\right\rangle$
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$

Mutation case 2: Uncorrelated mutation with $\mathrm{n} \sigma$'s

- Chromosomes $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}\right\rangle$
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $x_{i}^{\prime}=x_{i}+\sigma_{i}^{\prime} \cdot \mathcal{N}(0,1)$

Mutation case 2: Uncorrelated mutation with $\mathrm{n} \sigma$'s

- Chromosomes $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}\right\rangle$
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $x_{i}^{\prime}=x_{i}+\sigma_{i}^{\prime} \cdot \mathcal{N}(0,1)$
- Two learning rate parameters

Mutation case 2: Uncorrelated mutation with $\mathrm{n} \sigma$'s

- Chromosomes $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}\right\rangle$
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $x_{i}^{\prime}=x_{i}+\sigma_{i}^{\prime} \cdot \mathcal{N}(0,1)$
- Two learning rate parameters
- τ^{\prime} overall learning rate

Mutation case 2: Uncorrelated mutation with $\mathrm{n} \sigma$'s

- Chromosomes $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}\right\rangle$
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $x_{i}^{\prime}=x_{i}+\sigma_{i}^{\prime} \cdot \mathcal{N}(0,1)$
- Two learning rate parameters
- τ^{\prime} overall learning rate
- τ coordinate wise learning rate

Mutation case 2: Uncorrelated mutation with $\mathrm{n} \sigma$'s

- Chromosomes $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}\right\rangle$
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $x_{i}^{\prime}=x_{i}+\sigma_{i}^{\prime} \cdot \mathcal{N}(0,1)$
- Two learning rate parameters
- τ^{\prime} overall learning rate
- τ coordinate wise learning rate
- Typically $\tau^{\prime} \propto \frac{1}{(2 n)^{0.5}}$ and $\tau \propto \frac{1}{\left(2 n^{0.5}\right)^{0.5}}$

Mutation case 2: Uncorrelated mutation with $\mathrm{n} \sigma$'s

- Chromosomes $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}\right\rangle$
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $x_{i}^{\prime}=x_{i}+\sigma_{i}^{\prime} \cdot \mathcal{N}(0,1)$
- Two learning rate parameters
- τ^{\prime} overall learning rate
- τ coordinate wise learning rate
- Typically $\tau^{\prime} \propto \frac{1}{(2 n)^{0.5}}$ and $\tau \propto \frac{1}{\left(2 n^{0.5}\right)^{0.5}}$
- And we have a boundary rule: if $\sigma_{i}^{\prime}<\epsilon$ then $\sigma_{i}^{\prime}=\epsilon$

Mutation case 2: Uncorrelated mutation with $\mathrm{n} \sigma$'s

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:
- $c_{i i}=\sigma_{i}^{2}$

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:
- $c_{i i}=\sigma_{i}^{2}$
- $c_{i j}=0$ if i and j are not correlated.

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:
- $c_{i i}=\sigma_{i}^{2}$
- $c_{i j}=0$ if i and j are not correlated.
- $c_{i i}=0.5\left(\sigma_{i}^{2}-\sigma_{j}^{2}\right) \cdot \tan \left(2 . \alpha_{i j}\right)$ if i and j are correlated.

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:
- $c_{i i}=\sigma_{i}^{2}$
- $c_{i j}=0$ if i and j are not correlated.
- $c_{i i}=0.5\left(\sigma_{i}^{2}-\sigma_{j}^{2}\right) \cdot \tan \left(2 . \alpha_{i j}\right)$ if i and j are correlated.
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:
- $c_{i i}=\sigma_{i}^{2}$
- $c_{i j}=0$ if i and j are not correlated.
- $c_{i i}=0.5\left(\sigma_{i}^{2}-\sigma_{j}^{2}\right) \cdot \tan \left(2 . \alpha_{i j}\right)$ if i and j are correlated.
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $\alpha_{j}^{\prime}=\alpha_{j}+\beta \cdot \mathcal{N}(0,1)$

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:
- $c_{i i}=\sigma_{i}^{2}$
- $c_{i j}=0$ if i and j are not correlated.
- $c_{i i}=0.5\left(\sigma_{i}^{2}-\sigma_{j}^{2}\right) \cdot \tan \left(2 . \alpha_{i j}\right)$ if i and j are correlated.
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $\alpha_{j}^{\prime}=\alpha_{j}+\beta \cdot \mathcal{N}(0,1)$
- $x^{\prime}=x+\mathcal{N}\left(0, C^{\prime}\right)$

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:
- $c_{i i}=\sigma_{i}^{2}$
- $c_{i j}=0$ if i and j are not correlated.
- $c_{i i}=0.5\left(\sigma_{i}^{2}-\sigma_{j}^{2}\right) \cdot \tan \left(2 . \alpha_{i j}\right)$ if i and j are correlated.
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $\alpha_{j}^{\prime}=\alpha_{j}+\beta \cdot \mathcal{N}(0,1)$
- $x^{\prime}=x+\mathcal{N}\left(0, C^{\prime}\right)$
- C^{\prime} is the covariance matrix C after mutation.

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:
- $c_{i i}=\sigma_{i}^{2}$
- $c_{i j}=0$ if i and j are not correlated.
- $c_{i i}=0.5\left(\sigma_{i}^{2}-\sigma_{j}^{2}\right) \cdot \tan \left(2 . \alpha_{i j}\right)$ if i and j are correlated.
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $\alpha_{j}^{\prime}=\alpha_{j}+\beta \cdot \mathcal{N}(0,1)$
- $x^{\prime}=x+\mathcal{N}\left(0, C^{\prime}\right)$
- C^{\prime} is the covariance matrix C after mutation.
- Typically $\tau^{\prime} \propto \frac{1}{(2 n)^{0.5}}, \tau \propto \frac{1}{\left(2 n^{0.5}\right)^{0.5}}$, and $\beta=5^{\circ}$.

Mutation case 3: Correlated mutations

- Chromosomes: $x^{t}=\left\langle x_{1}^{t}, \ldots, x_{n}^{t}, \sigma_{1}^{t}, \ldots, \sigma_{n}^{t}, \alpha_{1}^{t}, \ldots, \alpha_{k}^{t}\right\rangle$
- Where $\mathrm{k}=\frac{n(n-1)}{2}$
- We define covariance matrix C as:
- $c_{i i}=\sigma_{i}^{2}$
- $c_{i j}=0$ if i and j are not correlated.
- $c_{i i}=0.5\left(\sigma_{i}^{2}-\sigma_{j}^{2}\right) \cdot \tan \left(2 . \alpha_{i j}\right)$ if i and j are correlated.
- $\sigma_{i}^{\prime}=\sigma_{i} \cdot e^{\tau^{\prime} \cdot \mathcal{N}(0,1)+\tau \cdot \mathcal{N}(0,1)}$
- $\alpha_{j}^{\prime}=\alpha_{j}+\beta \cdot \mathcal{N}(0,1)$
- $x^{\prime}=x+\mathcal{N}\left(0, C^{\prime}\right)$
- C^{\prime} is the covariance matrix C after mutation.
- Typically $\tau^{\prime} \propto \frac{1}{(2 n)^{0.5}}, \tau \propto \frac{1}{\left(2 n^{0.5}\right)^{0.5}}$, and $\beta=5^{\circ}$.
- And we have a boundary rule: if $\sigma_{i}^{\prime}<\epsilon$ then $\sigma_{i}^{\prime}=\epsilon$

Mutation case 3: Correlated mutations

Outline

(1) Introduction
(2) Evolution Strategies
(3) Mutation in Evolution Strategies

4 Recombination in Evolution Strategies
(5) Illustration Example

Recombination

- Creates one child $z=\left\langle z_{1}, \ldots, z_{n}\right\rangle$
- Two parents can be selected randomly then recombine to generate a child
- OR, two parents can be selected randomly then recombine to generate a single gene value.

	Two fixed parents	Two parents selected for each gene
$z_{i}=\left(x_{i}+y_{i}\right) / 2$	Local average	Global average
$z_{i}=\left(\alpha x_{i}+(1-\alpha) y_{i}\right) / 2$	Local arithmetic	Global arithmetic
$z_{i}=$ choose x_{i} or y_{i} randomly	Local discrete	Global discrete

Types of arithmetic recombination

- Single Arithmetic Recombination Pick a random gene k. At that position, take the arithmetic average of the two parents.

0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.5	0.9

0.3	0.2	0.3	0.2	0.3	0.2	0.3	0.2	0.3

0.3	0.2	0.3	0.2	0.3	0.2	0.3	0.5	0.3

Types of arithmetic recombination

- Whole Arithmetic Recombination Take the weighted sum of the two parental values for each gene
$0.1|0.2| 0.3|0.4| 0.5|0.6| 0.7|0.8| 0.9$
$0.20 .2|0.3| 0.3|0.4| 0.4|0.50 .5| 0.6$
$0.3|0.2| 0.3|0.2| 0.3|0.2| 0.3|0.2| 0.3$
$0.2|0.2| 0.3|0.3| 0.4|0.4| 0.5|0.5| 0.6$

Types of arithmetic recombination

- Simple Arithmetic Recombination First pick a recombination point k. Take the weighted sum of the two parental values for each gene starting from k .

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0.3 & 0.2 & 0.3 & 0.2 & 0.3 & 0.2 & 0.5 & 0.5 & 0.6 \\
\hline
\end{array}
$$

Outline

(1) Introduction
(2) Evolution Strategies
(3) Mutation in Evolution Strategies

4 Recombination in Evolution Strategies
(5) Illustration Example

Self-adaptation illustrated

- Given a dynamically changing fitness landscape (optimum location shifted every 200 generations)
- Self-adaptive ES is able to
- follow the optimum and
- adjust the mutation step size after every shift !

Self-adaptation illustrated

- Given a dynamically changing fitness landscape (optimum location shifted every 200 generations)
- Self-adaptive ES is able to
- follow the optimum and
- adjust the mutation step size after every shift !

Self-adaptation illustrated cont.

Changes in the average best objective function values (left) and the mutation step sizes (right). The x -axis is the number of generations.

References

- Goldenberg, D.E., 1989. Genetic algorithms in search, optimization and machine learning.
- Michalewicz, Z., 2013. Genetic algorithms + data structures= evolution programs. Springer Science \& Business Media

Questions \mathcal{R}

